

Manual de sustentabilidad y eficiencia energética para proyectos de infraestructura UC

Septiembre 2019

Equipo del proyecto

Dirección de Infraestructura UC EBP Chile SpA

EBP Chile SpA AG
La Concepción 191
Piso 12, Of. 1201
Comuna Providencia
Santiago de Chile
Chile
Teléfono +56 2 2573 8505
Antonio.espinoza@ebp.ch
www.ebpchile.cl

Impresión: 11. septiembre.aa

20190911_Manual_Dirección de Infraestructura UC_2.docx

Historia del documento

Versión	Autor	Fecha	Revisado por	Observaciones / modificaciones
1	Antonio Espinoza	Sept 2019	F. Palacios	

Tabla de contenidos

1.	Alca	nnce	7
	1.1	Generalidades	8
2.	Efic	iencia energética en diseño	9
	2.1	Componentes del diseño	9
	2.2	Estimación de la demanda energética	10
	2.3	Proceso de evaluación energética	11
	2.4	Estimación de consumo	12
	2.5	Configuración de envolvente y protecciones solares	12
		2.5.1 Control solar	12
		2.5.2 Configuración de envolvente	14
	2.6	Iluminación natural	18
		2.6.1 Metodología de análisis	18
	2.7	Hermeticidad y cerramientos interiores	22
	2.8	Entregables	24
3.	Req	uerimientos proyectos de climatización	25
	3.1	Respecto al proceso de diseño	25
		3.1.2 Cálculos de potencia térmica	26
	3.2	Parámetros de diseño	27
		3.2.1 Perfil de ocupación y ganancias internas	27
		3.2.2 Temperatura de diseño	31
		3.2.3 Condiciones de diseño de la envolvente	32
	3.3	Selección de equipos	33
		3.3.1 Acerca de la ubicación de los equipos	35
	3.4	Aspectos de filtros y mantención	35
	3.5	Aspectos de ventilación	36
	3.6	Ruido de equipos	36
4.	Req	uerimientos proyecto de iluminación	37
	4.1	Parámetros de diseño	37
		4.1.1 Nivel de iluminancia y uniformidad media	37
		4.1.2 Nivel de potencia instalada	38
		4.1.3 Temperatura de color e IRC	39
		4.1.4 Grado de protección de las luminarias	39
		4.1.5 Enchufes y zonificación	40

	4.2	Aspectos de selección mantención de equipos	40		
	4.3	Aspectos de sensores y control	41		
	4.4	Consideraciones en etapa de implementación	41		
5.	Mate	eriales y terminaciones	42		
	5.1	Parámetros de diseño	42		
	5.2	Terminaciones de cielo	43		
	5.3	Terminaciones de muros	44		
		5.3.1 Terminaciones de muros interiores	44		
		5.3.2 Terminaciones de muros exteriores	47		
	5.4	Terminaciones de piso	47		
	5.5	Terminaciones de adhesivos y pinturas	50		
	5.6	Terminaciones de elementos operables y muebles en obra	53		
6.	Req	uerimientos proyecto de sanitarios	54		
	6.1	Criterios generales	54		
		6.1.1 Nivel de consumo de artefactos sanitarios	54		
	6.2	Aspectos generales de proyectos sanitarios	55		
A1	Ane	xos	57		
	A1.1	Parámetros de simulación energética	57		
		A1.1.1 Perfil de ocupación y ganancias internas	58		
		A1.1.2 Condiciones de diseño de la envolvente base	59		
		A1.1.3 Perfil de uso de los espacios	60		
	A1.2	2 Tabla selección equipos de climatización	61		
	A1.3	Recomendaciones de fachada y control solar	62		
	A1.4	.4 Análisis de iluminación en eventos particulares			

1. Alcance

El alcance de este documento corresponde al manual diseño de infraestructura o adecuación de infraestructura de la Pontificia Universidad Católica de Chile. Se busca que este documento sea un elemento de referencia para la elaboración de proyectos de diseño de edificaciones, con énfasis en la sustentabilidad energética, y en sistemas que simplifiquen la operación y mantención de los edificios.

Este documento incluye lineamientos de diseño para los siguientes aspectos:

- Arquitectura y energía
- Climatización
- Iluminación
- Sanitario
- Materiales y terminaciones

1.1 Generalidades

Los requerimientos parte de este manual buscan establecer lineamientos de diseño para las nuevas instalaciones, como las adecuaciones de espacios existentes de la Pontificia Universidad Católica de Chile.

Forman parte de este manual todos los antecedentes técnicos y administrativos aportados por la Universidad, así como las siguientes disposiciones:

- Ley General de Urbanismo y Construcciones, Ordenanza General de Urbanismo y Construcciones, junto con las Ordenanzas Municipales respectivas.
- Norma NCh Elec. 4/2003 Electricidad Instalaciones de Consumo en Baja Tensión
- ASHRAE, American Society of Heating, Refrigerating and Air Conditioning Engineers, Fundamental Handbook 2009, 62.1 – 2016, 90.1 2010.
- SMACNA, Sheet Metal & Air Conditioning Contractor's National Association.
- NCh 853 Asilamiento térmico envolvente térmica de edificios
- RITCH. Reglamento de Instalaciones térmicas en los edificios en Chile. 2007
- Bases o Antecedentes Generales de la Pontificia Universidad Católica de Chile para el desarrollo de proyectos de infraestructura.
- Manual 1 de Evaluación y Calificación Certificación de Edificio Sustentable, versión mayo de 2014.

Cualquier discrepancia que se genere al aplicar los lineamientos de este documento, será resuelta en acuerdo entre la Dirección de Infraestructura y el usuario final del edificio.

2. Eficiencia energética en diseño

En este capítulo se entregan recomendaciones que buscan contar con un proceso uniforme que permita tomar decisiones de diseño informadas con respecto al comportamiento energético de los edificios en etapa de diseño. Los contenidos de este capítulo, están dirigidos al equipo de arquitectura como al especialista de eficiencia energética, en el caso que el proyecto cuente con dicha especialidad.

Cualquier discrepancia que se genere al aplicar los lineamientos de este documento, será resuelta en acuerdo entre la Dirección de Infraestructura y el usuario final del edificio.

2.1 Componentes del diseño

Para definir los aspectos del diseño de los edificios que afecte su comportamiento energético, se identifican cuatro áreas principales de trabajo.

- Demanda energética estimada
- Configuración de envolvente y protecciones solares
- Iluminación natural
- Hermeticidad y cerramientos
- Áreas verdes y paisajismo

2.2 Estimación de la demanda energética

Este capítulo aplica en el caso que los proyectos que cuenten con un especialista de eficiencia energética que pueda estimar la demanda de energía anual en climatización e iluminación.

Para estimar la demanda energética de los edificios de la Universidad, se debe seguir un proceso de simulación a través software, en que se dé énfasis en la reducción de la demanda energética mediante estrategias de diseño pasivo del proyecto.

Tabla 1 Recomendación de demanda máxima de acuerdo con el tipo de edificio¹

	Demanda referencial máxima refrigeración	Demanda referencial máxima calefacción
Edificios de oficina	55 kWh/m²año	20 kWh/m² año
Edificios de aulas o talleres	80 kWh/m²año	15 kWh/m² año
Auditorios	90 kWh/m²año	20 kWh/m²año
Bibliotecas	40 kWh/m²año	25 kWh/m²año

Nota importante:

- Los valores descritos en la Tabla 1 son referenciales, se utilizarán para servir de valores máximos que podrán alcanzar las simulaciones energéticas en etapa de diseño.
- Los valores presentados en la Tabla 1 han sido identificadas a partir de previos análisis a edificios en proceso de diseño llevados adelante por la Universidad.

Es importante considerar que los valores se deben calcular por tipo de edificio, considerando los espacios predominantes. En el caso que un edificio considere dos espacios de similar tamaño, se puede medir de acuerdo a dos calcificaciones de espacios (ej: edificio de oficinas con auditorio).

¹ Elaboración propia en base a análisis de edificios construidos por la Universidad durante los últimos 5 años

2.3 Proceso de evaluación energética

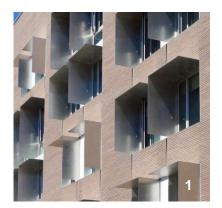
En el caso del desarrollo de simulaciones energéticas, se solicita que el proceso de análisis siga los siguientes pasos:

Levantamiento del caso base y proceso iteratrivo

Con respecto al caso base, se propone que éste se defina de acuerdo a los lineamientos descritos en los siguientes puntos:

Ámbito	Arquitectura del edificio	Determinación de envolvente	Determinación de usos y ganancias internas	Estrategias de análisis
Parámetro / Estrategias	De acuerdo a arquitectura de proyecto	De acuerdo a punto 3.2.3	De acuerdo a punto 3.2	Definir en conjunto con equipo de diseño y Dirección de Infraestructura, ejemplo: - Aislamiento - Protecciones solares - Ventilación
Consideraciones / Resultados	En el caso de edificios en zonas de densidad urbana considerable, incluir el contexto	Los parámetros de envolvente son variables de acuerdo a las condiciones de cada proyecto	Las condiciones internas pueden ser revisadas principalmente en relación a la carga de alumnos presentes en las salas	1 Resultados de demanda energética 2 Impacto en operación (\$) 3 Soluciones costo eficiente de acuerdo al proyecto

2.4 Estimación de consumo


El especialista de eficiencia energética deberá estimar un consumo de climatización del edificio, considerando distintos equipos de climatización. Esto se realizará con apoyo del especialista de climatización. En el punto 3.3 (página 33) se presenta la metodología propuesta.

2.5 Configuración de envolvente y protecciones solares

De manera general, la Universidad busca que el diseño de las fachadas de los edificio tenga en consideración elementos de protección solar en

2.5.1 Control solar

A continuación, se muestran sistemas de aplicación simple, que se pueden aplicar en el diseño de fachadas de la infraestructura de los edificios.

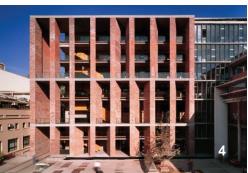


Figura 1 Ejemplos sistemas control solar

- 1. Residencias Amherst College Greenway, fuente Transsolar
- Edificio Patio Alameda UC (Fachada verde), fuente Escuela de Administración UC
- 3. ASU Health Services Building, Fuente: Moderni
- 4. Edificio Escuela de Medicina U, Fuente Revista ARQ n°59

Nota importante:

- En el caso tener interés en proyectar una fachada vegetal, este elemento no debe ser un muro vegetal, sino un sistema de jardineras.
- Se debe coordinar con el especialista de paisajismo, los requerimientos que deben tener las jardineras, y la demanda de las plantas a seleccionar, para asegurar el correcto crecimiento de las especies.

En el caso de especificar elementos como "cubierta verde", se recomienda que éstos incluyan elementos tipo maseteros, o elementos en obra (ejemplo Figura 2).

Figura 2 Ejemplo de elementos de paisajismo en cubierta²

Lo anterior se propone en función de que los espacios tipo "cubiertas verdes" tengan una combinación de elementos que permitan acotar el área de riego, en función de reducir el consumo de agua. Se recomienda combinar estos elementos con maicillo o *mulch* para complementar las zonas transitables.

² http://intainforma.inta.gov.ar

2.5.2 Configuración de envolvente

Para el desarrollo de nuevos proyectos de infraestructura, se propone considerar como base una envolvente con niveles de aislamiento, los cuales se podrán modificar en la medida que las cargas internas del edificio generen altas temperaturas en el interior.

Para esto, se han establecido valores referenciales, los cuales podrán ser modificados de ser requerido. Las modificaciones a estos valores deben ser aprobadas por la Dirección de Infraestructura de la Universidad.

Tabla 2 Tabla valores de envolvente referenciales³

Elemento	Valor de transmitancia	Descripción
	mínimo	
Muros (ver nota en	0,8 W/m ² K	Equivalente a un muro de
página 16)		hormigón de 15 cm con 40
		mm de aislación térmica
Cubiertas	0,3 W/m ² K	Equivalente a 150 mm de
		lana mineral en cubierta
Pisos en contacto	0,8 W/m ² K (en recintos	Equivalente a radier de 100 +
con el terreno	de baja carga interna)	40 mm de poliestireno
		inyectado bajo el terreno
	> 0,8 W/m ² K en recintos	En recintos de alta carga
	de mayor carga interna	interna como aulas,
		auditorios, el elemento
		aislante se puede reducir
		para facilitar las pérdidas
		energéticas
Pisos ventilados	0,8 W/m ² K (en recintos	Equivalente a losa de 100 +
	de baja carga interna)	40 mm de poliuretano
		expandido
	> 0,8 W/m ² K en recintos	En recintos de alta carga
	de mayor carga interna	interna como aulas,
		auditorios, el elemento
		aislante se puede reducir
		para facilitar las pérdidas
		energéticas

³ Fuente: Elaboración propia, en base a Manual de Evaluación y Operación CES

En el caso de edificios ubicados en el Campus Villarrica, se proponen los siguientes valores como mínimo.

Elemento	Valor de transmitancia mínimo	Descripción
Muros (ver nota)	0,6 W/m ² K	Equivalente a un muro de hormigón de 15 cm con 60 mm de aislación térmica
Cubiertas	0,2 W/m ² K	Equivalente a 200 mm de lana mineral en cubierta
Pisos en contacto con el terreno	0,6 W/m ² K (en recintos de baja carga interna)	Equivalente a radier de 100 + 50 mm de poliestireno inyectado bajo el terreno
Pisos ventilados	0,6 W/m ² K (en recintos de baja carga interna)	Equivalente a losa de 100 + 50 mm de poliuretano expandido

Nota importante:

Los valores indicados en la Tabla 19 son referenciales, en el caso que recintos requieran <u>aumentar o reducir</u> los valores de transmitancia para favorecer la disipación de energía, es posible realizar la evaluación. Esta modificación debe ser aprobada por la Dirección de Infraestructura.

Lo anterior se deberá hacer en especial en zonas con altas cargas internas

En el caso de edificios ubicados en el Campus Villarrica, se sugiere respetar los valores mínimos, dado que existiría mayor requerimiento de calefacción.

En el caso de optar por sistemas de certificación de sustentabilidad y eficiencia energétic (CES u otro), se debe tener en cuenta los valores de transmitancia obligatorios de dichos sistemas al momento de evaluar el proyecto.

En el caso de las ventanas, la selección de vidrios, y el porcentaje de área vidriada se debe determinar de acuerdo a la siguiente referencia.

Tabla 3 Valores referenciales para elementos vidriados en el caso de DVH.

Elemento	Valor de transmitancia base en vidrio tipo termopanel	Porcentaje de área de fachada vidriada máximo recomendado ⁴	
Ventanas norte		60% ≤	
Ventanas	3,0 W/m ² K	60% ≤	
oriente			
Ventanas		50% ≤	
poniente			
Ventanas sur		50% ≤	

Nota importante:

En el caso de edificios ubicados en el campus <u>Villarrica</u>, se debe respetar el vidrio termopanel con un valor de 2,4 W/m²K máximo.

⁴ Elaboración propia

Tabla 4 Coeficiente de ganancia solar recomendado por elementos vidriados de acuerdo a fachada

Elemento	SHGC Solar Heat Gain Coefficient / Coeficiente de Ganancia Solar		
	Santiago	Villarrica	
Ventanas norte	~0,5	0,6	
Ventanas oriente	~0,6	_	
Ventanas poniente	~0,5	0,6	
Ventanas sur	-	_	

Nota importante:

- Los valores de Coeficiente de Ganancias Solar (SHGC) presentados anteriormente corresponden a ventanas que no cuentan con sistemas pasivos de protección solar. Se recomienda que el diseño de las fachadas incluya estrategias de control solar en su arquitectura.
- Los valores de coeficiente de sombra se pueden lograr mediante estrategias de protección solar que reduzcan la radiación incidente.

2.6 Iluminación natural

La iluminación natural es unos de los aspcetos que se debe buscar en el diseño de los edificios de la Unviersidad. El diseño arquitectónico debe considerar la relación de los recintos con la iluminación natural. En este sentido, no solo correspondeal ingreso de iluminación natural sino al control de esta. Se busca un sistema de iluminación balanceado.

En este capítulo se presenta la metodología de análisis recomendada para el desarrollo de estudios de iluminación natural en las etapas de diseño de la infraestructura.

2.6.1 Metodología de análisis

Se propone que el especialista de eficiencia energética siga los siguientes pasos en el análisis de iluminación natural de los edificios.

Selección de recintos a analizar

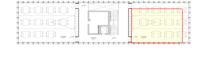
Se deberán seleccionar recintos representativos que permitan evaluar el impacto de las estrategias en cada orientación de mayor relevancia del edificio. De preferencia recintos de mayor exposición solar como se muestra en la figura.

Recinto 1

Figura 3 Ejemplo de selección de recintos a analizar en iluminación natural

Metodología de análisis

Se propone analizar de acuerdo a dos variables:


• Autonomía lumínica natural del espacio (Spacial daylight autonomy): Representa el porcentaje de tiempo (horas de luz día), en que un espacio en particular alcanza un nivel específico de iluminación⁵. Para este caso se propone 300 lux como nivel de medición.

Utilizando estea estándar, se solicita que el especialista de eficiencia energética presente los resultados por cada recinto seleccionado, de acuerdo a distintas estrategias. La siguiente tabla es un ejemplo de presentación de los resultados de iluminación natural.

Tabla 5 Propuesta de presentación de resultados de

Recinto	Orientación	Superficie	Nivel de autonomía lumínica	Estrategia de control solar
Recinto 1	Norte			
Recinto 2	Oriente / Poniente			
Recinto 3	Sur			
Recinto 4	Sur / oriente			

Se solicita además presentar la distribución de la iluminación en el espacio como se muestra en al siguiente figura.

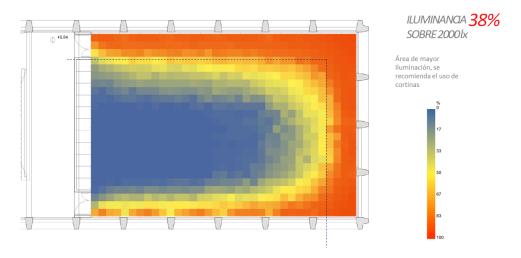


Figura 4 Ejemplo de presentación de resultados

⁵ Fuente: patternguide.advancedbuildings.net

Los niveles recomendados para cada parámetro son los siguientes:

Tabla 6 Valores mínimos recomendados para distintos tipos de recintos en estudio de iluminación natural (elaboración propia en base a estándar CES)

Recinto	Autonomía lumínica 300 lux
Recintos de trabajo, salas de clases, biblioteca	≥ 80%
Recintos deportivos	≥ 60%
Recintos tipo casino, cafetería	≥ 70%

Nota importante:

Los parámetros de medición buscan identificar las condiciones de iluminación natural en función de lograr un nivel de iluminancia adecuado, y controlar el exceso de iluminación. Es por esto que, en espacios de trabajo y aulas, se propone un nivel de lluminancia Útil mayor que en otro tipo de espacios.

En el caso de edificios que busquen la certificación CES, se debe considerar que esta tiene parámetros más exigentes de evaluación, los que se presentan en el anexo A1.4.

Estrategias para incrementar la iluminación natural controlada

En el caso de incorporar elementos que permitan incrementar la iluminación natural en los espacios de planta profunda, se podrán

Elemento Bandejas solares Permiten controlar la iluminación directa en las zonas cercanas a la ventana, y ayudan a aumentar la penetración solar en espacios profundos.

⁶ Fuente Julian A. Henderson

Lucernarios

Elementos traslúcidos o transparentes en cubiertas. Se solicita que en estos elementos sean principalmente verticales, y que se eviten las aguas interiores en los edificios.

⁷ Fuente: Indafer.com

2.7 Hermeticidad y cerramientos interiores

En este capítulo se describen recomendaciones para la configuración de particiones interiores y acciones generales de hermeticidad de los edificios.

En general, es importante considerar que las zonas abiertas en los pisos de los edificios no reciban aire exterior directo. Para esto se pueden implementar sistemas tipo chifloneras o puertas giratorias (en zonas de alto tráfico), con el fin de reducir el ingreso de aire exterior no controlado a zonas climatizadas, o zonas de trabajo.

Se debe considerar que muchas de estas zonas abiertas son áreas de trabajo, por lo que es necesario resguardar el confort de las personas que trabajan en dichas zonas. Para reducir el riesgo de disconfort por ingreso de aire exterior, se sugiere separar el ingreso de aire exterior, mediante un espacio de transición como se muestra en las siguientes figuras.

ESQUEMA SEPARACIÓN DE AIRE INTERIOR / EXTERIOR

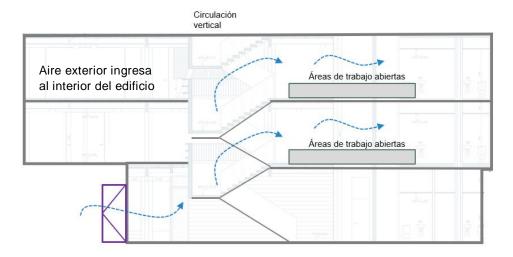


Figura 5 Ejemplo interior / zona de trabajo expuesto al aire exterior

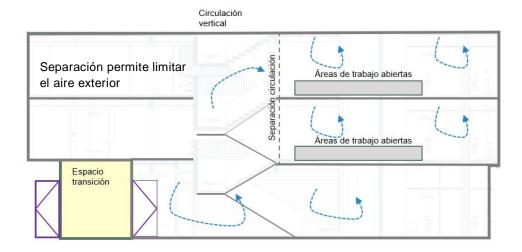


Figura 6 Ejemplo recomendación (separar aire de trabajo con circulación)

2.8 Entregables

Se requieren los siguientes entregables para el desarrollo del proyecto:

- Dos copias impresas y firmadas de los planos de los distintos proyectos (agua potable, alcantarillado, aguas lluvias)
- Planos de agua potable, alcantarillado y aguas lluvias en pdf
- Especificaciones técnicas
- Itemizado y presupuesto

3. Requerimientos proyectos de climatización

El objetivo de este capítulo es establecer criterios de estandarización y diseño, aplicables al desarrollo de proyectos de climatización, con una orientación en la eficiencia energética y la vida útil de los proyectos.

3.1 Respecto al proceso de diseño

Las siguientes recomendaciones buscan entregar lineamientos de apoyo al proceso de diseño, que permitan facilitar la toma de decisiones desde un punto de vista técnico y económico.

El siguiente esquema presenta una propuesta de trabajo para el desarrollo de la especialidad de climatización.

Metodología de trabajo Insumo Clíma Etapa proyecto Cálculo de potencia térmica preliminar Anteproyecto 2. Recomendaciones de sistemas Selección de sistema Comparación económica de sistemas de ventilación (implementación y operación) y climatización Entrega(s) parcial(es) de planos sistema de Proyecto clima y ventilación Desarrollo proyecto EE.TT. preliminares de HVAC Entrega de planos sistema de HVAC para Cierre proyecto construcción Revisión de itemizado Memoria de cálculos térmicos constructora EE.TT. para construcción

Figura 7 Esquema de actividades desarrollo especialidad de clima

Las etapas propuestas para el desarrollo del proyecto se presentan a continuación:

Etapa de anteproyecto

Se trabajará en conjunto con Arquitectura y Eficiencia Energética (si existe especialista), en la identificación de las zonas con mayor exigencia térmica. Se deberán buscar alternativas de medidas pasivas para lograr una reducción de las cargas térmicas. De preferencia aplicar medidas distintas a reducir el coeficiente de ganancia solar de los vidrios. Adicionalmente, con la estimación preliminar de las cargas térmicas, se deberá presentar el

análisis comparativo de equipos de acuerdo con el punto 3.3 (página 33) del presente manual.

Etapa de proyecto

Una vez seleccionado el sistema de climatización, se avanzará en desarrollar los siguientes productos del proyecto de acuerdo con las indicaciones de este manual.

Etapa de cierre

Se entregarán los siguientes elementos como parte de la entrega final para construcción:

- Planos en PDF y DWG del proyecto
- Especificaciones técnicas
- Itemizado de equipos
- Cálculos de potencia térmica finales
- Presupuesto itemizado

3.1.2 Cálculos de potencia térmica

Será obligación del especialista la entrega de los cálculos de potencia térmica de climatización en la etapa 1 del proyecto. Dicho resultado deberá ser comparado con los resultados que presente el especialista de eficiencia energética. El propósito de esto es identificar si existen zonas con excesiva carga térmica, en los que se puedan aplicar estrategias pasivas de reducción, de esta manera se podrán buscar en conjunto opciones de reducción de dicha potencia.

Nota importante:

En caso de que no sea posible una interacción con un especialista de eficiencia energética, se deberán presentar las cargas térmicas, se debe comparar con la Tabla 7 presentada a continuación.

Tabla 7 Cargas térmicas de climatización referenciales⁸

Tipo de recinto		Total Heat (Btuh/sq.ft)	Total Heat (W/m2)
Aulas	Total heat	43 – 53	135 - 167
	Sens. heat	34 – 40	107 - 126
Oficinas	Total heat	34 – 40	107 - 126
	Sens. heat	25 -28	78 - 88

 $^{^{\}rm 8}$ Elaboración propia en base a datos de "HVAC Equations, Data and Rules of Thiumb", Cap 5.

Auditorios	Total heat	600 – 840 (Btuh/asiento)	175 – 246 (Watts/asiento)
	Sens. heat	325 - 385 (Btuh/asiento)	95 – 112 (Watts/asiento)
Talleres / laboratorios	Total heat	40 - 120	126 - 378
145014101100	Sens. heat	_	_
Salas de reunión	Total heat	34 – 40	107 - 126
1 Guilloit	Sens. heat	34 – 40	107 - 126
Bibliotecas	Total heat	34 – 48	107 - 151
	Sens. heat	22 – 32	69 - 100
Comedores	Total heat	80 - 240	252 - 757
	Sens. heat	64 - 228	201 - 719
Salas de computación	Total heat	80 – 240	252 - 757
computation	Sens. heat	64 - 228	200 - 719
Cocinas (Depende del	Total heat	34 – 80	107 - 252
equipamiento)	Sens. heat	20 -56	63 - 176

Los cálculos de potencia térmica finales se deben presentar junto a la información planimétrica, especificaciones técnicas y fichas de equipos.

3.2 Parámetros de diseño

Los parámetros de los proyectos de climatización incluyen las siguientes condiciones que se deben considerar al momento de desarrollar un proyecto de.

- Perfil de ocupación y ganancias internas
- Temperatura de diseño
- Condiciones de diseño envolvente

Los parámetros de diseño se presentan a continuación.

3.2.1 Perfil de ocupación y ganancias internas

Para efectos de los cálculos de potencia térmica, y del diseño de los sistemas de ventilación se debe tener en consideración los siguientes parámetros de ocupación de acuerdo con el tipo de recinto

Tabla 8 Condiciones de uso de los recintos9

Tipo de recinto	Horario de ocupación (Ver Anexo A1	Cargas internas (po	ersonas)	Cargas internas (equipos)	Cargas internas (iluminación)	Tasa de ventilación		Infiltración
		m²/pers	Watts/pers	Watts/m ²	Watts/m ²	It seg/ persona	Lt seg/ m ²	Renovaciones de aire
Aulas	08:00 - 20:00	1,1 a 1,5	82	_	10	3,8	0,3	0,5
Oficinas privadas	08:00 – 18:00	7 a 12	82	15	9	2,5	0,3	0,5
Oficinas compartidas	08:00 – 18:00	4 a 5	82	15	9	2,5	0,3	0,5
Auditorios	09:00 – 19:00	2,0	82	_	10	3,8	0,3	0,5
Talleres / laboratorios	09:00 – 20:00	2,0	131	15 ¹⁰ (ver nota)	10	5	0,9	0,5
Gimnasios (solo área de deporte)	09:00 – 20:00	4,0	-	_	10	_	1,5	0,5
Salas de reunión (oficinas)	09:00 – 18:00	1,5	82	_	9	2,5	0,3	0,5
Bibliotecas	09:00 – 20:00	2	82	1,4	9			0,5
Comedores	10:00 – 17:00	1,8	82	_	9	3,8	0,9	0,5

⁹ Fuente: Elaboración propia en base a datos de Manual 1 Evaluación CES y estándares UC, en caso de aplicar certificación CES; revisar los niveles en detalle

¹⁰ Se debe consultar al usuario final el tipo de equipos y determinar si se debe modificar este valor

Nota importante:

- Para efectos del diseño de espacios de servicio como cocina, bodegas, camarines y baños, referirse a estándar ASHRAE 62.1.
- En caso de presentar espacios educativos que no se encuentren en esta tabla, se deberá acordar con la Dirección de Infraestructura y el usuario final el tipo de condiciones que más se asemejan al uso.
- Los horarios de ocupación se presentan en detalle en el anexo A1.1.

3.2.2 Temperatura de diseño

Para el desarrollo de los cálculos de potencias térmicas y dimensionamiento de los equipos, se debe utilizar la siguiente referencia en temperatura de diseño.

Tabla 9 Condiciones de temperatura de los recintos 11

Tipo de recinto	Temperatura diseño invierno	Temperatura diseño verano
Aulas	18°C	25°C
Oficinas	20°C	24°C
Auditorios	20°C	24
Talleres / laboratorios	19°C	24°C
Gimnasios	_	_
Salas de reunión	20°C	24°C
Bibliotecas	20°C	24°C
Comedores	18°C	25°C

¹¹ Fuente: Elaboración propia en base a datos de Manual 1 Evaluación CES

3.2.3 Condiciones de diseño de la envolvente

Para el caso de las condiciones de diseño de la envolvente se deber considerar parámetros de envolvente base de acuerdo con la siguiente tabla.

Tabla 10 Tabla de potencia instalada referencial 12

Elemento	Valor de
	transmitancia base
Muros (ver nota)	0,8 W/m ² K
Cubiertas	0,35 W/m ² K
Pisos en contacto con el terreno	0,8 W/m ² K
Pisos ventilados	0,8 W/m ² K

Nota importante:

Los valores indicados en la son referenciales, en el caso que recintos requieran <u>aumentar o reducir</u> los valores de transmitancia para favorecer la disipación de energía, es posible realizar la evaluación. Esta modificación debe ser aprobada por la Dirección de Infraestructura.

Lo anterior se deberá hacer en especial en zonas con altas cargas internas

En el caso de las ventanas, se debe aplicar el siguiente criterio.

Elemento	Valor de transmitancia base en DVH	SHGC (Solar Heat Gain Coefficient)
Ventanas norte		~0,5
Ventanas oriente	3,0 W/m ² K	~0,7
Ventanas poniente	5,0 vv/III K	~0,5
Ventanas sur		_

 $^{^{\}rm 12}$ Fuente: Elaboración propia, en base a Manual de Evaluación y Operación CES

Nota importante:

- En ambos casos (envolvente opaca y ventanas), se sugiere que el especialista entregue su evaluación de las zonas que presenten altas potencias térmicas, para buscar estrategias de reducción dicha potencia en conjunto con el equipo de Arquitectura y la Dirección de Infraestructura.
- Al igual que la situación anterior, los valores podrán ser modificados en caso de que se acuerde por resultados de evaluación económica.
- En caso de utilizar vidrio monolítico, se debe revisar las condiciones descritas en el capítulo 2.5.2.

Se recomienda el uso de marco de PVC, en caso de que Arquitectura busque reemplazar este material, deberá informar a la Dirección de Infraestructura.

3.3 Selección de equipos

Para definir el tipo de equipos de climatización de un edificio, se deben tener en consideración las siguientes actividades:

- En la etapa de selección de los equipos de climatización, el especialista deberá presentar un análisis que se desglose de la siguiente forma. (Completar tabla de acuerdo a Anexo A1.2, página 61).

Tabla 11 Tabla a completar por especialista de clima

Indicar tipo de equipo	Costo implementaci ón	utilizada (kWh)	ergía anual) considerando e los sistemas	Estimar energía anual utilizada (\$)
	referencial	Calefacción	Refrigeración	
Equipo tipo A (N) kW	\$			
Ej: Chiller				
Equipo tipo B (N) kW Ej: VRF	\$			
Equipo tipo C (N) kW	\$			

Se solicita considerar tres tipos de equipos diferentes, presentando de manera simple los costos y beneficios de la selección de cada equipo. Posteriormente, el equipo seleccionado será validado por la Dirección de Infraestructura.

Nota importante:

- Para la estimación de precio, utilizar un valor referencial del costo de kWh de \$80.
- Considerar velocidades de aire bajas

3.3.1 Acerca de la ubicación de los equipos

Para seleccionar la ubicación de los equipos de climatización, debe primar un principio de menor recorrido de las cañerías a las unidades terminales. De preferencia la ubicación debe ser en las cubiertas. Al momento de determinar la ubicación de los equipos de climatización, Arquitectura deberá indicar la distancia del recinto habitable más cercano, y evaluar el impacto acústico que los equipos de climatización tendrán sobre dicho recinto.

Nota importante:

En el caso de seleccionar equipos en niveles inferiores del edificio (subterráneo) se debe evaluar el impacto acústico en los recintos. Los equipos ubicados en estas zonas deben:

- Ser silenciosos, entre ellos, equipos tipo inverter y magnéticos.
- Deberá contar un sistema de atenuación de ruido validado por un especialista acústico.
- La selección de equipos en niveles distintos a las cubiertas debe cumplir con las expectativas de costo de operación de la Universidad, y no ser más alto en costo mensual de consumo eléctrico que otras soluciones aplicadas por la Universidad.

En todos los casos, se debe asegurar que exista acceso expedito a los equipos, y que éstos se encuentren cercanos a un arranque de aqua para alimentar el sistema.

3.4 Aspectos de filtros y mantención

En este punto se abordan los aspectos de mantención de los filtros de los equipos, y a las mantenciones en general.

En relación a los filtros se recomienda:

- Que estos sean MERV 12 correspondiente a una eficiencia del 80% 13
- Se debe considerar pre filtro lavable de eficiencia del 30%
- Considerar pre filtro lavable de eficiencia 30% + filtro bolsa eficiencia 80%.

En relación a las mantenciones, se solicita que el especialista de climatización que entregue o valide, criterios de mantención. Como referencia se presentan los siguientes.

- En edificios de oficinas cada 120 días (en caso de usar chiller cada 30 días)
- En edificios de aulas cada 60 días (en caso de usar chiller cada 30 días)

 $^{^{\}rm 13}$ En el caso de CES, siempre se debe considerar un filtro mínimo MERV 9 o eficiencia del 50%

- En laboratorios por evento, o bien cada 90 días
- En los proyectos de climatización se deberán incluir ablandadores de agua

3.5 Aspectos de ventilación

Los parámetros de ventilación se presentan en la Tabla 6. En este punto se abordan los aspectos de diseño que debe incluir el sistema de ventilación.

- En salas de clases (o espacios de alta densidad), se debe asegurar el ingreso de aire mediante un damper.
- En la ventilación de salas de clases (o espacios de alta densidad), considerar una UMA con variador de frecuencia.
- Se debe incluir ventilación (o extracción) en subterráneos.

Con respecto al control de los equipos de climatización, las unidades interiores deberán ser controladas por los usuarios. En cualquier caso, se deben evitar operaciones complejas que dependan de los usuarios.

3.6 Ruido de equipos

Con respecto al ruido que se puede generar en los interiores del edificio a partir de los equipos de climatización, se solicita que el equipo de proyecto evalúe el impacto de los equipos, e informe a la Dirección de Infraestructura de potenciales estrategias para reducir los problemas por alto nivel de ruido. De preferencia esta información debe ser consultada a un especialista acústico.

4. Requerimientos proyecto de iluminación

El objetivo de este capítulo es establecer criterios de estandarización y diseño, aplicables al desarrollo de proyectos de iluminación, con una orientación en la eficiencia energética y la vida útil de los proyectos.

4.1 Parámetros de diseño

Los parámetros de diseño se definen en los siguientes componentes:

- Nivel de iluminancia
- Nivel de potencia máxima instalada por recinto
- Temperatura de color

4.1.1 Nivel de iluminancia y uniformidad media

El nivel de iluminancia mínima de los recintos a iluminar, junto con la uniformidad media se presentan en la Tabla 19.

Tabla 12 Niveles de iluminancia mínima 14

Tipo de recinto	Iluminancia	Uniformidad
	[lux]	media [Um]
Atención administrativa	300	0,5
Biblioteca	400	0,5
Cocinas	300	0,5
Gimnasios	200	0,5
Oficinas	400	0,5
Pasillos	100	_
Policlínicos	300	0,5
Salas de cirugía menor	500	0,5
Salas de cirugía mayor ¹⁵	500	0,5
Salas de clases educación superior	300	0,5
Salas de dibujo	600	0,5
Salas de espera	150	0,5
Salas de pacientes	100	0,5
Salas de profesores	400	0,5
Auditorios	300	_
Bodegas	150	_
Casinos / restaurant	300	0,5

¹⁴ Fuente: Elaboración propia en base a datos de la NCh Elec. 4/2003 y Manual 1 Evaluación CES

¹⁵ No considera aporte de lámpara quirúrjica300

Comedores	200	0,5
Laboratorios	500	0,5
Salas de venta	300	0,5
Hall de acceso	200	_
Aula / Taller	500	0,5
Salas de acto (escenario)	700	
Salas de acto (público)	200	

- Se debe asegurar mediante cálculo, el cumplimiento de los requerimientos de iluminancia en los recintos.
- El nivel de iluminancia promedio no se debe superar en más de un 25%.
- Se debe lograr una uniformidad de la iluminación ≥ al 50%

En el caso de la uniformidad media, este valor se calculará en función de los valores de iluminancia media y mínima para cada recinto, de acuerdo a la siguiente fórmula¹⁶.

Uniformidad media [Um] = Iluminancia mínima / Iluminancia media

4.1.2 Nivel de potencia instalada

El nivel de potencia instalada máxima recomendada por tipo recintos de edificios se presenta en la siguiente tabla:

Tabla 13 Tabla de potencia instalada referencial¹⁷

Tipo de recinto	Potencia instalada W/m²
Oficina individual / planta abierta	9 W/m ²
Comedor	9 W/m²
Hall / Lobby	7 W/m ²
Laboratorios	11 W/m ²
Biblioteca	9 W/m ²
Pasillos	6 W/m ²

¹⁶ Fuente: Manual de Evaluación y Calificación 1 CES

¹⁷ Fuente: Elaboración propia, en base a Manual de Evaluación y Operación CES

Cocina (Preparación de alimentos)	10 W/m ²
Gimnasios (área de ejercicio)	10 W/m ²
Escaleras	6 W/m ²
Salas de clases educación superior	10 W/m ²
Taller	10 W/m ²
Aulas	10 W/m ²

Se especificarán luminarias LED en el 100% de los recintos a diseñar, se podrán especificar otras fuentes en la medida que el usuario final así lo requiera (pabellones, laboratorios, etc.)

4.1.3 Temperatura de color e IRC

En el caso que el usuario final no cuente con requerimientos específicos para el diseño de los proyectos de iluminación, se deben especificar equipos con una temperatura de color de **4.000K** (blanca) en los siguientes recintos:

- Oficinas
- Laboratorios
- Aulas
- Bibliotecas

Otro tipo de recintos podrán tener una temperatura de color distinta, la cual debe ser aprobada por la Dirección de Infraestructura y el usuario final del edificio. En todos los casos, se deberá consultar al usuario final si existen requerimientos de temperatura de color específico.

Para el caso de las mismas zonas descritas anteriormente, el Índice de Reproducción Cromática (IRC o RA) debe ser entre 70 – 85.

4.1.4 Grado de protección de las luminarias

Se recomienda el siguiente nivel de protección IP en las luminarias proyectadas.

Tabla 14 Grado IP recomendado en luminarias

Tipo de recinto	Grado IP
Luminarias exteriores	55
Luminarias interiores	41 / 42
Áreas húmedas (camarines, cocinas)	55

4.1.5 Enchufes y zonificación

La cantidad y ubicación de enchufes y zonificación de éstos será propuesto en primera instancia por el especialista y posteriormente deberá ser validado por el usuario final y por la Dirección de Infraestructura.

4.2 Aspectos de selección mantención de equipos

Al momento de especificar los equipos de iluminación se deben tener en cuenta los siguientes requerimientos:

- Al momento de especificar un proyecto de iluminación, los equipos deben contar con el certificado SEC de los equipos seleccionados.
- Se ha establecido un costo referencial máximo por la partida de iluminación en distintos tipos de recintos (Tabla 15) de acuerdo con distintos tipos de recintos, se recomienda a los especialistas de iluminación o eléctrico, respetar el costo máximo por equipos. Se debe considerar que se debe combinar el precio máximo de luminarias, con la potencia máxima instalada, de manera de no sobre diseñar los espacios, y no especificar una cantidad de luminarias que exceda en más de un 25% los niveles de iluminancia de la Tabla 19.

Tabla 15 Costo máximo sugerido por luminaria de acuerdo a tipo de recinto

Tipo de recinto	Costo máximo sugerido	Referencia ¹⁸
Oficinas / Box de atención	0,5 UF/m ²	ref 1 ref 2 ref 3
Bibliotecas	0,5 UF/m ²	ref 1 ref 2 ref 3
Aulas / talleres	0,4 UF/m ²	<u>ref 1</u> <u>ref 2</u> <u>ref 3</u>
Auditorios	0,5 UF/m ²	<u>ref 1</u> <u>ref 2</u>
SS.HH.	0,6 UF/m ²	<u>ref 1</u>
Pasillos	0,3 UF/m ²	<u>ref 1</u> <u>ref 2</u>
Casinos	0,25 UF/m ²	<u>ref 1</u>
Bodegas	0,3 UF/m ²	<u>ref 1</u> <u>ref 2</u>
Estacionamientos	0,05 UF/m ²	<u>ref 1</u> <u>ref 2</u>

¹⁸ Sugerencias, el especialista podrá seleccionar el tipo de luminaria con la aprobación de la Dirección de Infraestructura

En ningún caso se deben modificar las especificaciones de las luminarias (ejemplo: no cambiar difusor o lente), con el fin de no afectar la garantía de los equipos de iluminación. Solo se aceptarán modificaciones de fábrica con garantía.

4.3 Aspectos de sensores y control

Las siguientes recomendaciones corresponden se deben evaluar de acuerdo a cada proyecto, sin embargo, siempre se debe tener control manual de las lunimarias.

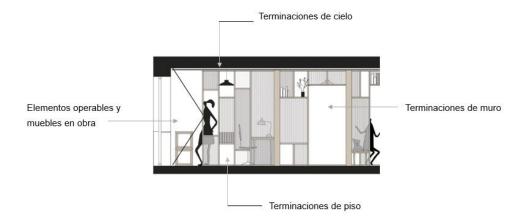
- En la proyección de nuevos recintos, considerar la instalación de sensores de la siguiente forma:

Tipo de recinto	Tipo de sensor
Aulas y zonas de trabajo abierto	Sensor de uso y horario
	Considerar sensor dual
	(movimiento y volumen)
Bodegas	Sensor de presencia
Baños	Sensor de uso y horario
	Considerar sensor dual
	(movimiento y volumen)
Comedor	Sensor horario

- Se debe evaluar en la etapa inicial del proyecto, los eventuales beneficios de instalar sensores de iluminación. Eventualmente, los proyectos pueden contar con la canalización para un futuro sistema de control.

4.4 Consideraciones en etapa de implementación

Se recomienda que exista una revisión del especialista del itemizado y especificaciones técnicas de la oferta realizada por la constructora. El especialista eléctrico podrá realizar observaciones a los componentes de la oferta de las empresas constructoras.


5. Materiales y terminaciones

El objetivo de este capítulo es establecer criterios de estandarización y diseño, en la definición de las terminaciones de los proyectos de arquitectura de la Universidad. La estandarización de las terminaciones se realiza en función de aportar en la operación eficiente de los edificios, y por consiguiente en la eficiencia energética de la infraestructura.

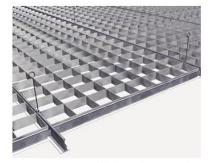
5.1 Parámetros de diseño

Para definir los aspectos de las terminaciones que se definirán en este capítulo, se aplica la siguiente clasificación

- Terminaciones de cielo
- Terminaciones de muros
- Terminaciones de piso
- Terminaciones de elementos operables y muebles en obra

5.2 Terminaciones de cielo

En general, se debe aplicar un criterio de diseño que facilite la inspección de los cielos, en este sentido, se deben evitar diseño de cielos no inspeccionables. Las siguientes son aplicaciones favorables en la infraestructura.


Cielos parcialmente abiertos

Cielos modulares

Cielo modular rejilla

Figura 8 propuesta de aplicaciones de cielo aprobadas.

Las características de la definición de cielos se describen a continuación.

Tabla 16 Aplicaciones de cielos

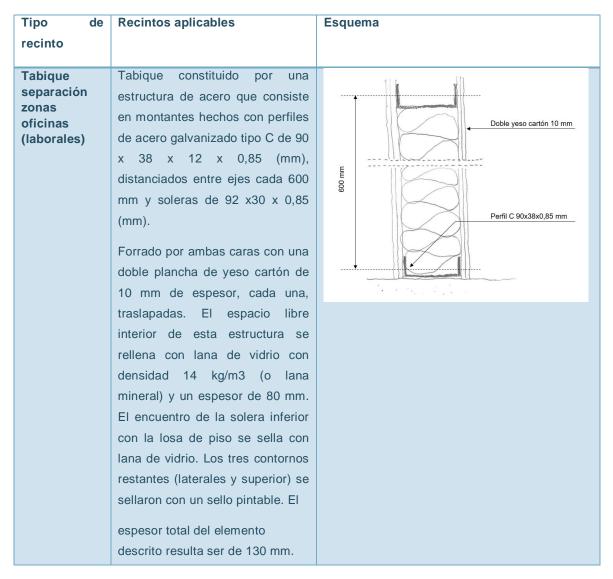
Tipo de recinto	Recintos aplicables	Observación
Cielos parcialmente abiertos	Oficinas Salas de reunión Aulas Circulaciones Salas de exposición	En general permiten la inspección y/o reemplazo de elementos sin caer en un costo alto de aplicación. En el caso de este tipo de cielo, se debe evitar su instalación en exteriores, para evitar el anidamiento de aves. Cuando esta solución se aplique en aulas o áreas de alta densidad, se debe consultar con un especialista acústico respecto a esta aplicación.
Cielos modulares	Oficinas Salas de reunión Aulas Comedores	En general permiten la inspección y/o reemplazo de elementos sin caer en un costo alto de aplicación. Ofrecen una ventaja en el control de la reverberación, por lo que son favorables para zonas de alta ocupación.

Cielo – losa terminada	Circulaciones Salas de exposición Hall Bodegas y áreas de servicio Recintos de baja densidad	Se debe tener en cuenta que la aplicación de este tipo de cielos en zonas de alta densidad puede traer consigo problemas de confort acústico.
Cielos modulares / rejilla	Oficinas Salas de reunión Aulas Circulaciones Salas de exposición	En general permiten la inspección y/o reemplazo de elementos sin caer en un costo alto de aplicación. En el caso de este tipo de cielo, se debe evitar su instalación en exteriores, para evitar el anidamiento de aves.

- En el caso de cielos abiertos, o elementos tipo bandejas instalados en exteriores, se debe cuidar que éstos no sean propensos a anidamiento de aves.
- Se deben evitar cielos continuos no inspeccionables, o cielos de madera de dimensiones amplias (Ej: cielos de placas de terciado)
- Salvo en recintos donde se requiera proyección, o por indicaciones del usuario, los cielos deben ser de tonos claros para reducir el deslumbramiento y aprovechar el uso de la iluminación natural.
- En el caso de incluir cenefas, se solicita que éstas no incluyan instalaciones.

5.3 Terminaciones de muros

Esto se clasifica en muros interiores, correspondiente a tabiques y terminaciones de muros perimetrales, y a revestimientos o diseño de muros exteriores.


5.3.1 Terminaciones de muros interiores

En general, los tabiques que se diseñarán en la Universidad deben tener un nivel de reducción acústica adecuado, se deben utilizar las siguientes especificaciones de tabiques.

Especificación tabiques zonas oficinas (baja densidad)

En zonas de baja densidad ocupacional, como oficinas y salas de reuniones, que limiten con recintos similares o circulaciones (de trabajo), se debe diseñar un tabique de las siguientes características (35 dBA mínimo):

Tabla 17 Tabique tipo zonas de trabajo

Especificación tabiques zonas alta densidad ocupacional

En zonas de alta densidad ocupacional, como zonas docentes o circulaciones de alto tránsito, se debe diseñar un tabique de las siguientes características (50 dBA estimado):

Tabla 18 Propuesta tabique zonas docentes

Tipo de	Recintos aplicables	Esquema
recinto		
Tabique separación zonas docentes	Tabique constituido por una estructura de acero que consta de dos soleras (inferior y superior) de 92 x 30 x 0,85 mm. La estructura se compone de montantes tipo C de 60 x 38 x 0,85 mm, distanciados a 300 mm entre ejes e instalados en forma alternada en la solera. Esta estructura está forrada por ambas caras con una doble plancha de yeso-cartón de 10 mm de espesor, cada una, traslapadas. El espacio libre interior de esta estructura se rellena con lana de vidrio con densidad 14 kg/m3 (o lana mineral) y un espesor de 80 mm. La lana se despliega en forma horizontal y continua desde un extremo del tabique al otro. Los encuentros se sellan con un sello acústico. El espesor total del elemento descrito resulta ser de 130 mm.	Perfil C 60x38x0,85 mm Perfil C 90x38x0,85 mm Sello

Especificación tabiques zonas húmedas

En recintos que limiten con zonas húmedas se aplicarán los criterios descritos anteriormente, incluyendo elementos resistentes a la humedad en la cara que corresponda (yeso cartón RH y cerámica o porcelanato)

- En los casos de zonas que no correspondan a servicios higiénicos, el color de la terminación de los muros interiores será determinado por el usuario final en consulta con la Dirección de Infraestructura de la Universidad.
- Las especificaciones descritas anteriormente podrán ser modificadas por el especialista acústico en caso de que se considere en el proyecto.
- Los tabiques deberán ser diseñados y aislados hasta fondo de losa para reducir el riesgo de traspaso de ruido a través de los cielos entre los recintos.

5.3.2 Terminaciones de muros exteriores

En general, donde existan revestimientos exteriores, se deben evitar revestimientos que "rigidicen" la estructura, o bien que su instalación no considere las juntas de dilatación de los edificios. En general evitar las siguientes situaciones:

- Revestimientos tipo mosaico, en especial en zona donde exista separación del material de soporte.
- Aperturas en muros que generen cavidades y permitan el anidamiento de aves, o colonias de insectos.

5.4 Terminaciones de piso

En general, las terminaciones de piso se deben proyectar dependiendo de la función de los espacios respectivos. A continuación, se describen los principales requerimientos.

Terminación de piso interior - exterior

Al momento de diseñar terminaciones de piso interior – exterior, se debe asegurar que exista hermeticidad en el edificio, por lo que se deben evitar pisos irregulares en zonas de acceso que puedan generar problemas de hermeticidad. Para evitar esta situación se debe considerar lo siguiente:

- Evitar que el nivel de piso de la zona exterior e interior sea el mismo, idealmente el edificio debe tener un nivel de piso mayor
- Evitar que pavimentos irregulares (por ejemplo: piedra, adocreto, pastelones) ingresen al interior del edificio
- Evitar el exceso de puertas que no sean necesarias

Las siguientes imágenes describen la situación que se debe evitar para aumentar la hermeticidad de los edificios.

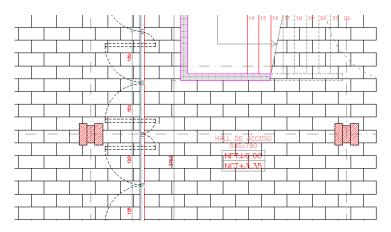


Figura 9 Ejemplo de zonas en las que no se debe incluir pavimentos irregulares

Figura 10 Ejemplo de pavimentos irregulares (no en zonas de acceso o puertas)

En la siguiente tabla se presentan tipos de pavimentos y su respectiva aplicación.

Tabla 19 Condiciones de uso de los recintos

Hormigón Exteriores¹⁹ lavado Hormigón peinado Irregulares Exteriores **Pastelones Adocretos** Piedra Porcelanato Interiores Pisos Zonas de alto vinílicos / tráfico, resina laboratorios, epóxica oficinas

¹⁹ Fuente imágenes: <u>soladosdehormigon.blogspot.com / pavivasa.com</u>

Oficinas / Piso flotante /
recintos de vinílico flotante
bajo tráfico Alfombra

Nota importante:

En baños, se debe evitar el uso de pavimentos altamente reflectivos, se sugiere especificar cerámicos o porcelanatos opacos.

5.5 Terminaciones de adhesivos y pinturas

Con respecto a los adhesivos y sellantes, se propone que éstos tengan un nivel de componentes orgánicos volátiles que permitan contar con un ambiente bajo en COV de acuerdo a estándar de referencia.

Nota importante:

Los compuestos orgánicos volátiles (COV) son sustancias químicas que contienen carbono y tienden a evaporarse fácilmente a temperatura ambiente. Se encuentran presentes principalmente en los materiales de construcción utilizados en un edificio, así como en los muebles, etc. Sus efectos a la salud son variables en funci \tilde{A} 3n del tipo de compuesto, sin embargo, de manera general, se considera que el 80% de los COV son potenciales irritantes a la piel, ojos y tracto respiratorio, y el 25% podrán ser cancerígenos.

20

²⁰ Fuente: Manual de Evaluación y Certificación CES

Terminación de adhesivos y sellantes

Se deben incluir sellos en las especificaciones técnicas de los proyectos con el fin de reducir las infiltraciones no controladas de los edificios. La recomendación de sellos de acuerdo a elementos se presenta en la siguiente tabla.

Elemento	Sellos a considerar	Observación
Ventanas, juntas de cubiertas y/o techumbre	Silicona neutra	En cubierta y/o zonas expuestas a la radiación considerar fltro UV
Ventanas / muros cortina	Silcona estructural Sellos XPS	

Adicionalmente, se propone que el contenido máximo de COV para no supere el contenido límite recomendado de referencia, de acuerdo a la siguiente tabla.

Tabla 20 Valores máximos de referencia

Tipo o familia de producto	Aplicación	Contenido COV (g/L menos agua)	Alternativas mercado
Adhesivos para: - Alfombra interior - Pisos de caucho - Adhesivos de asfalto - Adhesivo en base "cove" - Sustrato de material poroso (excepto madera)	Pisos	50 g/l	Ref 1 Ref 2 Ref 3 Ref 4
Adhesivos para azulejos y cerámicas		65 g/l	Ref 1 Ref 2 Ref 3
 Sellante primer arquitectónico no poroso Adhesivos superiores y de ajuste Sellante estructural 	Piso	250 g/l	
Sellante primer arquitectónico no poroso	Piso	775 g/l	
Otros sellantes	No piso	420 g/l	
Adhesivo de contacto	No piso	80 g/l	
Adhesivo para soldadura ABS	No piso	325 g/l	
Adhesivo para soldadura plástica de cemento	No piso	250 g/l	
Adhesivo em aerosol spray	No piso	65 g/l	
Adhesivo de madera estructural	No piso	140 g/l	
Otros sellantes	No piso	420 g/l	

Terminación de pinturas recubrimiento

Se propone que el contenido máximo de COV para no supere el contenido límite recomendado de referencia, de acuerdo a la siguiente tabla.

Tabla 21 Valores máximos de referencia

Tipo de producto	Contenido COV (g/L menos agua)	Alternativas mercado
Anti corrosivo	250	Ref 1 Ref 2
Laca clara para terminación de madera	550	
Sellador claro de lijado de terminación	350	<u>Ref 1</u>
Barniz claro para terminación de maderas	350	Ref 1 Ref 2 Ref 3
Recubrimiento de piso	100	Ref 1 Ref 2 Ref 3
Pintura lisa de interiores	50	Ref 1 Ref 2 Ref 3
Selladores y revestimentos	200	
Recubrimiento de magnesita para cemento	350	
Selladores impermeabilizante	250	Ref 1 Ref 2 Ref 3
Impermeabilización de concreto / selladores de mampostería	400	<u>Ref 1</u> <u>Ref 2</u>
Preservantes de madera	120	<u>Ref 1</u> <u>Ref 2</u>

5.6 Terminaciones de elementos operables y muebles en obra

El criterio para terminaciones de elementos operables se describe a continuación.

Criterio especificación de puertas

En general, las puertas deben ser elementos de catálogo, no se deben diseñar elementos especiales para un edificio que sirvan de puertas.

Tabla 22 Detalles de especificaciones de puertas

Elemento	Medidas
Puertas interiores	- Ancho de acuerdo a normativa vigente
	(OGUC, ley de accesibilidad universal)
Puertas exteriores	- Evitar especificar puertas de quicio, en
	caso de que exista, éstas deben ser
	acotadas y a zonas de transición, por
	ejemplo: chifloneras

Nota importante:

La terminación en color y material de las puertas será definida en conjunto por el usuario final y la Dirección de infraestructura. En el caso de las puertas, se deberán reforzar marcos para evitar problemas de descuadre y asegurar cierre adecuado.

Se recomienda especificar manillas por sobre pomos para la apertura puertas, éstas deben ser anatómicas, con mecanismos de presión o de palanca y estar situada a 95 cm de altura.

Criterio especificación de closets y repisas

Se solicita incorporar los siguientes criterios:

- En cada nivel de los edificios se debe asegurar que exista un closet de aseo de medida mínima 60cm x 80 cm
- En el caso de proyectar repisas o closet en obra, la profundidad mínima mínimo debe ser de 28 cm y el alto mínimo de 32 cm.

6. Requerimientos proyecto de sanitarios

El objetivo de este capítulo es establecer criterios de estandarización y diseño, aplicables al desarrollo de proyectos sanitarios, con una orientación en la eficiencia energética y la vida útil de los proyectos. En específico se revisan los temas de proyectos sanitarios, esto incluye: agua potable, alcantarillado, aguas lluvias y riego.

Cualquier discrepancia que se genere al aplicar los lineamientos de este documento, será resuelta en acuerdo entre la Dirección de Infraestructura y el usuario final del edificio. Los parámetros de diseño se definen en los siguientes componentes:

- Nivel de consumo de los artefactos
- Aspectos generales de proyectos de agua potable alcantarillado
- Recomendaciones en proyectos de aprovechamiento de aguas lluvias o re utilización de agua
- Aspectos generales de proyecto

6.1 Criterios generales

Para el desarrollo de proyectos sanitarios en la infraestructura de la Pontificia Universidad Católica se han establecido los siguientes parámetros.

6.1.1 Nivel de consumo de artefactos sanitarios

Para determinar el consumo máximo de agua de los artefactos sanitarios, se debe utilizar, se debe aplicar la siguiente tabla.

Tabla 23 Consumo máximo por artefacto

Tipo de uso	Tipo de arte	facto	Consumo máximo	Referencia
Oficinas	Griferías lavamanos fluxómetro	de con	6 It/min	Ref 1 Ref 2 Ref 3 Ref 4
	Inodoros		3 a 10 lt/descarga (dual)	Ref 1 Ref 2 Ref 3 Ref 4 Ref 5
Aulas / talleres	Griferías lavamanos fluxómetro	de con	6 It/min	Ref 1 Ref 2 Ref 3 Ref 4
	Inodoros		3 a 10 lt/descarga (dual)	Ref 1 Ref 2 Ref 3 Ref 4 Ref 6 (fluxor)

	Urinarios	_	Ref 1 Ref 1 - Fluxor
			Ref 2 Ref 2 Fluxor
Gimnasio ²¹	Duchas	9 It/min	<u>Ref 1</u>
			<u>Ref 2</u>
			Ref 3 - Mezclador
			Ref 4 Ref 4 - Fluxor
Casinos	Lavaplatos	9 It/min	Ref 1 Ref 2

- Siempre en baños de alto tráfico se deben considerar inodoros de descarga a piso.
- En zonas de alto tráfico, optar por líneas institucionales
- No se utilizarán urinarios sin agua, para evitar dificultades de mantención y alto recambio de los cartridge de los urinarios sin agua

6.2 Aspectos generales de proyectos sanitarios

En general, se deberán tener las siguientes consideraciones en el desarrollo de proyectos de agua potable y alcantarillado.

En proyectos de evacuación de aguas Iluvias

Se debe considerar lo siguiente:

 Las bajadas siempre por exteriores de los edificios, en caso de que esto no sea posible, las bajadas de agua deben ser inspeccionables en cada piso, y no deben ir embutidas en muros

En proyectos de agua potable

Se debe considerar lo siguiente:

- Solicitar uso de cañerías de cobre, no PPR o PEX
- Se deben evitar inodoros con estanques de poca columna de agua
- Incluir ablandadores de agua para sistemas de AC (aire acondicionado)

En proyectos de agua alcantarillado

Se debe considerar lo siguiente:

- En inodoros se debe especificar equipos con un desagüe de 3 pulgadas.

²¹ Para lavamanos, WC y urinarios, aplican los parámetros de aulas

- Siempre se debe incluir ventilación en cámaras.
- Incluir doble tapa hermética en las cámaras
- Evitar cámaras en el interior del edificio, en caso de ser necesario instalar éstas en el interior, siempre se debe diseñar con doble tapa hermética para evitar.

En proyectos de riego

Se debe considerar lo siguiente:

- En general, se debe evitar el uso de nuevas superficies de pasto, pero este aspecto corresponde al diseño.
- El riego debe ser con elementos rociadores en zonas donde los estudiantes utilicen como áreas de descanso al aire libre.

En proyectos que se considere incorporar reciclaje de aguas grises

Si un proyecto considera incorporar sistema de reciclaje de aguas grises, se debe evaluar la conveniencia de un sistema de este tipo en la etapa de diseño. Se recomienda que en caso de incluir esta estrategia, sea en edificios de alto consumo de agua potable como edificios de camarines o gimnasios. Adicionalmente, se deberá considerar lo siguiente:

- En el caso que se busque diseñar un sistema de reciclaje, que éste sea diseñado para riego de paisajismo.
- Dado que en este tipo de instalaciones debe existir separación de aguas grises y aguas negras, se debe asegurar que exista un flujo de agua gris en la cota más alta para facilitar la limpieza de las cañerías.

Con respecto a la implementación del proyecto

Se debe considerar lo siguiente:

- Según lo requerido por la Superintendencia de Servicios Sanitarios, el ITO de la constructora deberá firmar los planos as built.

A1 Anexos

A1.1 Parámetros de simulación energética

Para el desarrollo de las simulaciones energéticas, se propone una estructura de trabajo que se oriente en lograr reducciones de la demanda energética en referencia al ante proyecto del edificio. Este proceso se resume en el siguiente esquema.

Actividad	Características	Producto
Inicio Levantar caso base	 Arquitectura similar a anteproyecto Envolvente acorde con Anexo A1 de Manual de proyectos UC Condiciones de uso y ganancias de acuerdo a Anexo A1 de Manual de proyectos UC 	Demanda energética de climatización (kWh/m2 año) Ganancias solares (kWh)
Desarrollo Realizar iteraciones que permitan reducir la demanda energética del edificio	 Incorporar protecciones solares Modificar materialidad en zonas de alta ganancia interna Revisar zonas de alta exposición solar y/o modificar el porcentaje de área vidriada 	Demanda energética de climatización (kWh/m2 año) Ganancias solares (kWh)
<u>Cierre</u> Actualizar demandas en caso final	 Incorporar las modificaciones integradas por arquitectura y la potencia de iluminación 	Demanda energética de climatización (kWh/m2 año)

Este proceso tiene como objetivo, informar al equipo de Arquitectura y al equipo de la Dirección de Infraestructura, de las acciones de diseño que permitirán reducir la demanda energética de climatización en los edificios.

Nota importante:

Se debe tener especial énfasis en la demanda de refrigeración, y en estrategias que permitan reducir la radiación incidente en ventanas de los edificios.

Para determinar las características del caso base, se propone lo siguiente.

Tabla 24 Características del caso base

Elemento	Características
Arquitectura del anteproyecto	De acuerdo a propuesta por Arquitectura
Fachadas y porcentaje de ventanas	
Protecciones solares	
Envolvente	Según condiciones de diseño Anexo A1.1.2

Ganancias internas	Según Tabla 25 y Tabla 26
Horario de uso	Según Tabla 25 y Anexo A1.1.3

A1.1.1 Perfil de ocupación y ganancias internas

Para efectos de los cálculos de potencia térmica, y del diseño de los sistemas de ventilación se debe tener en consideración los siguientes parámetros de ocupación de acuerdo con el tipo de recinto.

Tabla 25 Condiciones de uso de los recintos²²

Tipo de Horario de recinto / ocupación (Ver Anexo		Cargas internas (personas)		Tasa de ventilación		Infiltración
edificio	À1.1.3	m2/pers	Watts / Persona	lt seg/ persona	Lt seg/ m2	Renovaciones de aire
Aulas	08:00 – 20:00	1,1 a 1,5	82	3,8	0,3	0,5
Oficinas	08:00 – 18:00	7 a 12	82	2,5	0,3	0,5
Auditorios	09:00 – 19:00	4 a 5	82	3,8	0,3	0,5
Talleres / laboratorios	09:00 – 20:00	2,0	82	5	0,9	0,5
Gimnasios (solo área de deporte)	09:00 – 20:00	2,0	131	-	1,5	0,5
Salas de reunión	09:00 – 18:00	4,0	_	2,5	0,3	0,5
Bibliotecas	09:00 – 20:00	1,5	82			0,5
Comedores	10:00 – 17:00	2	82	3,8	0,9	0,5

Las cargas internas por iluminación y equipos se presentan por tipo de edificio, y se muestran en la siguiente tabla:

Tabla 26 Ganancias internas de equipos e iluminación de acuerdo a tipo de edificio

Tipo de recinto / edificio	Cargas internas (equipos)	Cargas internas (iluminación)	
	Watts/m2	Watts/m2	
Aulas	_	10	
Oficinas	15	9	
Auditorios	_	10	
Talleres / laboratorios	15	10	

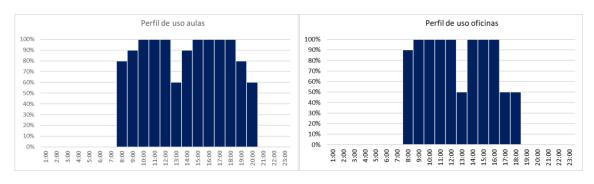
²² Fuente: Elaboración propia en base a datos de Manual 1 Evaluación CES

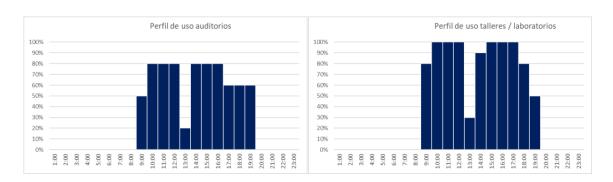
Gimnasios (solo área de deporte)	-	10
Salas de reunión	-	9
Bibliotecas	1,4	9
Comedores	-	9

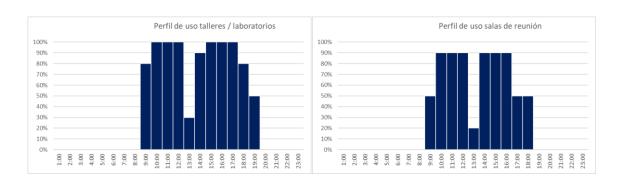
A1.1.2 Condiciones de diseño de la envolvente base

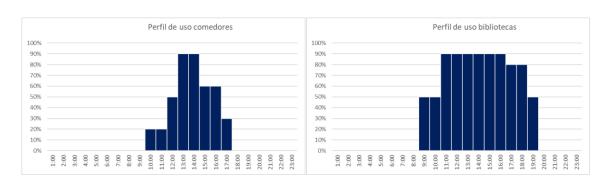
Para el caso de las condiciones de diseño de la envolvente se deber considerar parámetros de envolvente base de acuerdo con la siguiente tabla.

Tabla 27 Tabla de potencia instalada referencial²³


Elemento	Valor de
	transmitancia base
Muros	0,8 W/m ² K
Cubiertas	0,35 W/m ² K
Pisos en contacto con el terreno	0,8 W/m ² K
Pisos ventilados	0,8 W/m ² K


En el caso de las ventanas, se debe aplicar lo indicado en el punto 2.5.2 (página 14), dependiendo del tipo de vidrio que se utilice.


²³ Fuente: Elaboración propia, en base a Manual de Evaluación y Operación CES


A1.1.3 Perfil de uso de los espacios

Se propone el siguiente perfil de uso en caso de utilizar una modelación energética detallada.

A1.2 Tabla selección equipos de climatización

Indicar opciones de tres equipos de climatización, su costo de implementación estimado, y la energía anual estimada en kWh y \$.

Indicar tipo de equipo	Costo implementaci ón	Indicar energía anual utilizada (kWh) considerando la eficiencia de los sistemas		Estimar energía anual utilizada (\$)	
	referencial	Calefacción	Refrigeración		
Equipo tipo	\$				
kW					
Equipo tipo	\$				
kW					
Equipo tipo	¢.				
kW	\$				

A1.3 Recomendaciones de fachada y control solar

En el caso del control solar de fachadas se presentan propuestas recomendadas en función del diseño de la fachada o situaciones que generalmente se presentan en el diseño de proyectos.

Las recomendaciones de este capítulo se orientan en reducir la demanda energética desde el diseño inicial, aunque debieran analizarse mediante simulaciones energéticas para determinar el efecto de cada propuesta de diseño.

Recintos ubicados en fachadas norte

Tabla 28 Propuestas configuración fachadas norte

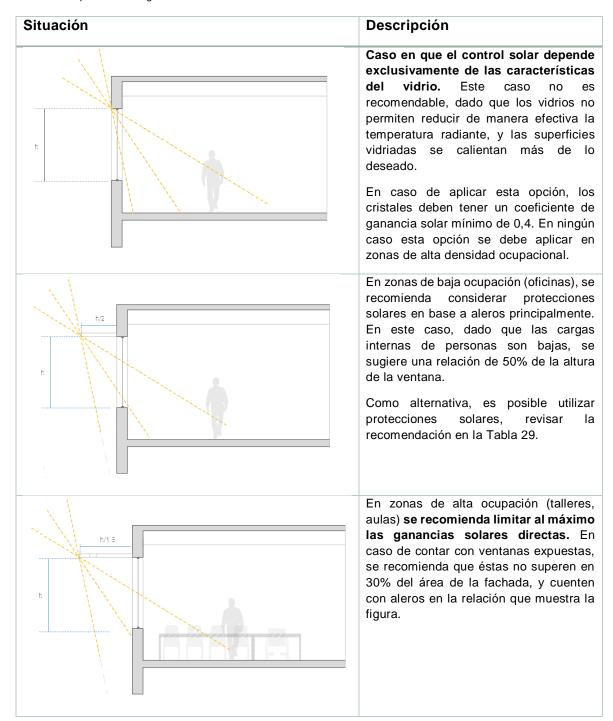
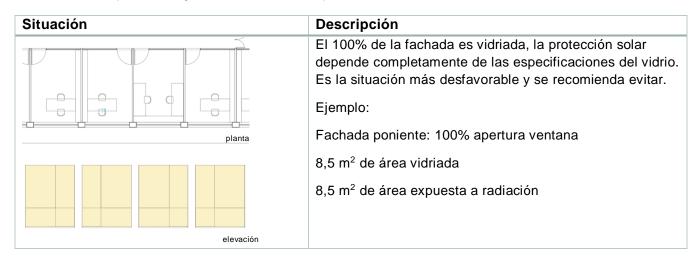
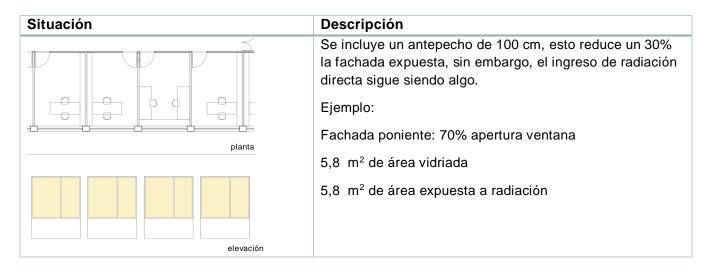
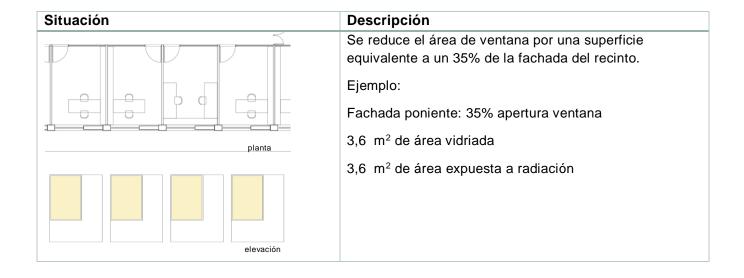


Tabla 29 Propuesta alternativa configuración fachadas norte

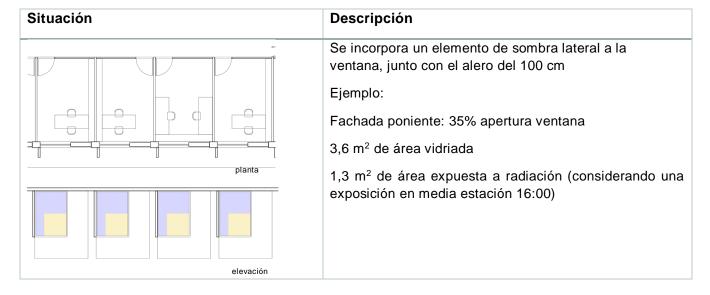
Situación Descripción Como alternativa, es posible aplicar un sistema de control solar en base a elementos exteriores ya sea tipo celosía pantalla. Estos elementos generalmente permiten el ingreso de radiación, por lo que se debe revisar en detalle en qué recintos se aplicarán (de preferencia en recintos de baja ganancias internas). La dificultad que presentan estos elementos es la limpieza, por lo que Arquitectura deberá presentar un esquema de limpieza de los vidrios exteriores y elementos de sombra que deberá ser aprobada por la Dirección de Infraestructura.

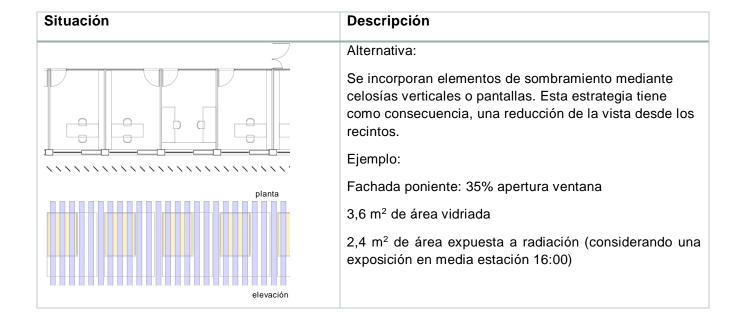

Nota importante:


- En el caso de proyectar elementos de protección solar exterior, Arquitectura debe considerar un plan de mantención para asegurar que las ventanas y los elementos de control solar, podrán tener acceso para ser limpiados por el equipo de mantención del edificio.
- Se debe presentar un plan de limpieza y mantención, con énfasis en el acceso a los elementos de protección solar.


Recintos ubicados en fachadas oriente / poniente

Si bien, las fachadas oriente y poniente presentan situaciones relativamente similares, se debe considerar que los recintos en dicha orientación (especialmente poniente) pueden estar expuestos a horas de radiación directa que pueden derivar en episodios de disconfort y alto consumo energético. Las recomendaciones expuestas en la siguiente tabla buscan orientar las decisiones de diseño de acuerdo con el tipo de uso de los espacios.


Tabla 30 Propuestas configuración fachadas oriente - poniente



A1.4 Análisis de iluminación en eventos particulares

 Iluminancia útil²⁴: Mide las condiciones de iluminancia entre un rango definido durante el periodo ocupado. Se solicita realizar la medición en un rango de 100 – 2000 lux.

En el caso que así sea requerido por la Dirección de Infraestructura, o solicitado por el equipo de Arquitectura, se podrán realizar distintos análisis de iluminación natural como: deslumbramiento, exposición solar, iluminancia, etc.

Figura 11 Ejemplo de análisis de deslumbramiento puntual

Estrategias para incrementar la iluminación natural

En el caso de incorporar elementos que permitan incrementar la iluminación natural en los espacios de planta profunda, se podrán

Elemento	Característica

²⁴ Fuente: patternguide.advancedbuildings.net

Bandejas solares

Permiten controlar la iluminación directa en las zonas cercanas a la ventana, y ayudan a aumentar la penetración solar en espacios profundos.

25

Lucernarios

Elementos traslúcidos o transparentes en cubiertas. Se solicita que en estos elementos sean principalmente verticales, y que se eviten las aguas interiores en los edificios.

20

²⁵ Fuente Julian A. Henderson

²⁶ Fuente: Indafer.com